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Artificial Neural Network
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Deep Neural Network
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IS MORE THAN CHATGPT
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LLM (large language model)
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https://www.cloudflare.com/learning/ai/what-is-artificial-intelligence/
https://www.cloudflare.com/learning/ai/big-data/
https://www.cloudflare.com/learning/ai/what-is-neural-network/

An apple a day
keeps the doctor
away.
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http://drive.google.com/file/d/1zFWejqPg2FrPzwUHkf-ySEVbVmUL7dEQ/view
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http://drive.google.com/file/d/1_YO-0KyG_63DwvluKta2Zyag8JgKQsal/view
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Classification ) ] Instance
+ Localization

Classification Object Detection

Segmentation

CAT, DOG, DUCK CAT, DOG, DUCK

L 9 P P
Y i

Single object Multiple objects

ERIZRIR © https://medium.com/zylapp/review-of-deep-learning-algorithms-for-object-detection-
c1f3d437b852
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Utilizing ChatGPT-embedded
virtual patients to enhance
the self-learning effectiveness
and flexibility for medical
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Problems to be solved

Medical students are overwhelmed by
demanding curriculum

¥

Lacking time to enhance their
clinical reasoning

\ 4

An alternative method

()
Web-based (< + ChatGPT
platform o

Self-learning virtual patient
platform




Key Features of the self-learning virtual
patient platform

. Multilingual and natural language interaction
> Simulating real clinical reasoning
3 Flexible and available beyond time, space and devices

4 Providing comprehensive evaluation
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https://youtu.be/1qkL9WA_q3c
https://youtu.be/1qkL9WA_q3c
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Study Design and

Methodoloq Encourage them to use the self-learning
platform as many times as possible

{ Ol July 2023 December 2023

39 evaluation items of clinical reasoning Diagnosis

165 medical

students

> SLE with pericarditis

Conversation score Diagnosis score
(0 ~ 100) (0~100)

Virtual patient Mrs. Tsai
Systemic lupus erythematosus (SLE)
with pericarditis

KRR

NATIONAL DEFENSE MEDICAL CENTER 5




Descriptive statistics

1 Completion Rate 85%

2 Gender Distribution 57% male

3 22%o medical students practiced
more than twice.

4 47% medical students were fourth-
year.




Results of Aim 1

-~ - Aim 2

Conversatio . :
Diagnosis

Attempt times n score
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Clinical reasoning performance

Are attempt times positively associated with clinical reasoning scores?
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1 2 3 over 4 Overall
(N=141) (N=31) (N=5) (N=4) (N=181)

Conversation Score
Mean (SD) 0.7 (27.2) 83.5(19.4) 86.0 (10.5) 86.5(9.11) 73.6 (25.9)
\EGIERR L\ EYeae 81.0 [0, 100] 86.0 [0, 100] 81.0[75.0, 100] 82.5[81.0, 100] 82.0 [0, 100]

Diagnosis Score

_31 (22.0%) 2 (6.5%) 1 (20.0%) 0 (0%) 34 (18.8%)
15 (10.6%) 1(3.2%) 0 (0%) 0 (0%) 16 (8.8%)
PN s (67.4%)  28(90.3%)  4(80.0%)  4(100%) 131 (72.4%)
31.4 (38.3) 24.3(14.9) 17.9 (7.85) 22.5 (15.1) 29.6 (34.6)

\VIERIE AT EY RN 22.2 [2.53, 329] 20.7 [1.08, 66.2] 16.2 [8.78, 30.2] 15.8 [13.6, 44.9] 21.5 [1.08, 329]



- 1 2 3 over 4 Overall
(N=141) (N=31) (N=5) (N=4) (N=181)

Conversation Score

Mean (SD) 70.7 (27.2) 83.5 (19.4) 86.0 (10.5) 86.5 (9.11) 73.6 (25.9)

VEE Y Era T 81.0 [0, 100]  86.0[0,100]  81.0[75.0,100] 82.5[81.0, 100] 82.0 [0, 100]

_31 (22.0%) 2 (6.5%) 1 (20.0%) 0 (0%) 34 (18.8%)

0.6% % 0 (0%) 0 (0%) 16 (8.8%)

1(80.0%) 4 (100%) 131 (72.4%)
31.4 (38.3) 24.3(14.9) 17.9 (7.85) 22.5(15.1) 29.6 (34.6)

\VIERIE AT EY RN 22.2 [2.53, 329] 20.7 [1.08, 66.2] 16.2 [8.78, 30.2] 15.8 [13.6, 44.9] 21.5 [1.08, 329]



- 1 2 3 over 4 Overall
(N=141) (N=31) (N=5) (N=4) (N=181)

Mean (SD) 70.7 (27.2) 83.5 (19.4) 86.0 (10.5) 86.5 (9.11) 73.6 (25.9)

VEE Y Era T 81.0 [0, 100]  86.0[0,100]  81.0[75.0,100] 82.5[81.0, 100] 82.0 [0, 100]

RN 2200 2(65%
50 0 6%

95 (67.4% 28 (90.3%

1 (20.0%) 0 (0%) 34 (18.8%)
0 (0%) 0 (0%) 16 (8.8%)
1 (80.0%) 4 (100%) 131 (72.4%)

Mean (SD) 31.4 (38.3 24.3 (14.9 17.9 (7.85 22.5(15.1 29.6 (34.6)
\VIERIE AT EY RN 22.2 [2.53, 329] 20.7 [1.08, 66.2] 16.2 [8.78, 30.2] 15.8 [13.6, 44.9] 21.5 [1.08, 329]

10



Results of Aim 2

Aim 2

f Conversatio Diagnosis
<« — >

Attempt times score

score

Clinical reasoning performance

Are conversation scores positively associated with
diagnosis scores ?
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Summary of ChatGPT-Embedded Self-
learning Virtual Patients

B¥ Enhance flexibility

Students can engage in self-learning at their own pace

2 Realistic simulations
Providing a safe and controlled environment to practice

N

15 Efficient and effective

&= Increase clinical reasoning skills

(O Minimize language barrier

13



Future works

1 Automatically create virtual patients
courses by generative Al

2 Validate across institutions and
countries

3 Incorporate into formal curriculums

International Cooperation

& Made with Gamma |

14



https://gamma.app

and anatomical structure recognition
system application in operating room for
minimally invasive surgery learning

Session : Surgery Education
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INCLUSIVE LEARNING ENVIRONMENTS TO TRANSFORM THE FUTURE



Background

* In the operating room, it’s a burden for operators to explain the
procedure in detail to students while performing surgery at the same
time.

* Meanwhile, medical students may feel confused and frustrated if
there’s no one guiding, especially during minimally invasive surgery,
such as laparoscopic or roBotic assisted surgery, since it shows three-
dimensional anatomic structure in a two-dimensional view.
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Movement :Grasp

Real time recognition of surgical tools,

Abdominal

surgical movements, abdominal organs

- U organs

were showed on the surgery video



https://vimeo.com/manage/videos/837276028




Rationale

Q To investigate whether this Al real-time surgical workflow and
* |anatomical structure recognition system would lead to better

knowledge acquisition, learning efficacy and increase learning
motivation, satisfaction of medical students

¥

1. Compare each student’s test score before and after using the system
2. A post-course questionnaire to assess outcomes from various
perspectives




Result

w,

. Gallblader
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Movement :Grasp

Clerk

n=20

Watch a cholecystectomy
surgery video

Watch a cholecystectomy
surgery video with Al
recognition system

Post-test

The outcomes were measured
using pre-test and post-test
designed by a CRS doctor.

Statistic with Mann-Whitney
U Test

The U-value is 51. The critical
valueof Uat p<.05is 87.
Therefore, students’ score in
Post-test significantly
increased than pre-test.

Pre-test Post-test
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Result

Watch a cholecystectomy surgery

video with Al recognition system

. Gallblader
Y, B

Movement :Grasp

The outcomes were
measured using a 5-point
Likert scale
guestionnaires

Knowledge acquisition

® 94% students scored more than 3 out of 5 that
the system would promote knowledge
acquisition

Efficacy and motivation

* 32% of students scored more than 3 out of
5 that the system would promote learning
efficacy and motivation

Satisfaction

e Compared to original instruction method,
statistic by Mann-Whitney U Test,
students’, satisfaction in learning surgery
significantly increased (Z-Score =-2.78316,
p<.05.)
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Colorectal Surgery Assistant
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Act like a teacher and answer the student according to the file

HERENZE

@ Surgical treatment of re... @ 978-3-030-66049-9-616...
PDF PDF

@ Clinical presentation, di... @ Low anterior resection s...
PDF PDF

Right and extended righ...
PDF

EfEtEE

Overview of the manag...
PDF

Minimally invasive tech...
PDF
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Act like a teacher and answer the student according to the files.
Your should refer to the files before answer the question.

PY —F E _|—_E EE E/\J prom pt If there is no answer in the file, you should answer 'l don't know.'

If I ask 'which vessel should be ligated in right hemicolectomy' or similar question, you should answer 'lleocolic artery, Right colic
artery, Right branch of the middle colic artery'.

If I ask a question not associated with colorectal cancer or surgery, you should answer 'l don't know".

BEEA



what | eat in breakfast?

| don't know what you should eat for breakfast.

what vessel should be removed in right
hemicolectomy?

In a right hemicolectomy, the vessels that should be ligated are:
e lleocolic artery
e Right colic artery

e Right branch of the middle colic artery.
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Result

tell me which vessel will be removed
during laparoscopic left hemicolectomy

During a laparoscopic left hemicolectomy, the vessels that
are typically removed include the inferior mesenteric artery
(IMA) and the inferior mesenteric vein (IMV). Here's a more

detailed breakdown:

"Colorectal Surgery
Assistant” model was
regulated by senior doctor

Students could ask "Colorectal
Surgery Assistant” any
questions in the operating
room

Questionnaire

We designed a questionnaire
based on the Kirkpatrick Model,
using a scale from 1 to 5.

73.5% and 66.7% of students had
more than 75% confidence that
ChatGPT 4.0 would promote
knowledge acquisition and
learning efficacy respectively.

Compared to original instruction
method, students’ satisfaction in
learning surgery significantly
increased.
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