THE LANCET

Drugs

ADVERSE DRUG REACTION BULLETIN

Challenges in the assessment of adverse drug reactions in children and neonates

Louise Bracken^{4,5}, Anthony Nunn^{6,5}, Matthew Peak^{8,5} & Mark Turner^{n.b.d}

期刊報告

新光醫院 諮詢組 吳俊杰藥師

dur season (ADRs). In alabs, ADRs of 1837 milion a year. The impact of Medicine and Healthcar produce Regulacombut significantly to pation morbidity. ADRs in purchases is not as well questionary Agency (MIRA) collects quantities.

Lancet 2019; 394: 1335-43

Edoxaban-based versus vitamin K antagonist-based antithrombotic regimen after successful coronary stenting in patients with atrial fibrillation (ENTRUST-AF PCI): a randomised, open-label, phase 3b trial

Background: However, the effects of Edoxaban in combination with a P2Y12 inhibitor in the setting of PCI are unexplored.

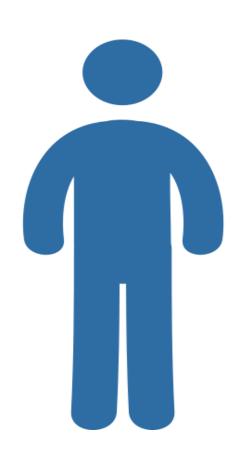
Method

- Trial design: randomised, multicentre, open-label, non-inferiority phase 3b trial
 - AF requiring oral anticoagulation.

(N=1506)

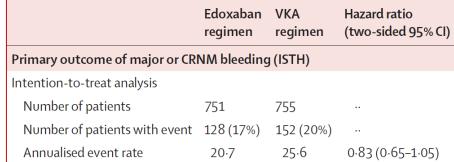
- Age > 18.
- Had a successful PCI for stable CAD or ACS.

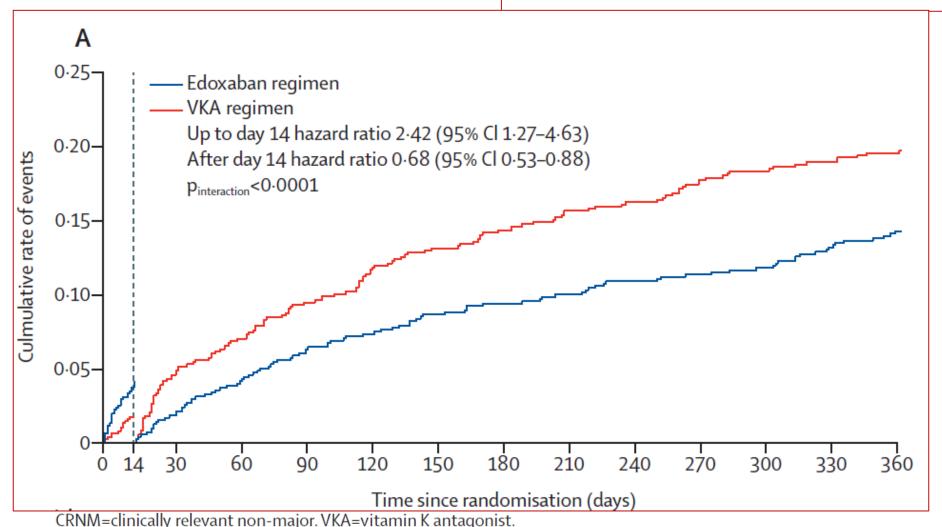
Edoxaban 60mg QD + P2Y12 inhibitors (N=751)


Endoxaban adjust dose:

- CrCl: 15-50 ml/min
- BW < 60kg
- Concomitant use specified potent p-gp inhibitors

Warfarin +
P2Y12 inhibitors +
Aspirin
(N=755)


 Primary outcome: Composite of major or clinically relevant non-major (CRNM) bleeding within 12 months.


Baseline characteristics

- Age: 70
- Type of P2Y12 inhibitors:
 - Clopidogrel (93%)
 - Ticagrelor (7%)
 - Prasugrel 5 mg (<1%)
 - Prasugrel 10 mg (<1%)
- Clinical presentation
 - ACS (52%)
 - SCAD (48%)
- No significant difference between groups.

Primary Outcome

Outcome

Major bleeding (ISTH)			
Intention-to-treat analysis			
Number of patients	751	755	••
Number of patients with event	45 (6%)	48 (6%)	
Annualised event rate	6.7	7.2	0.95 (0.63–1.42)

```
Main efficacy outcome (composite of cardiovascular death, stroke, systemic embolic event, myocardial infarction, or definite stent thrombosis)

Intention-to-treat analysis

Number of patients 751 755 ... ...

Number of patients with event 49 (7%) 46 (6%) ... ...

Annualised event rate 7.3 6.9 1.06 (0.71–1.69) ...
```

Conclusion

• In patients with AF who had PCI, the edoxabanbased regimen was non-inferior for bleeding compared with the VKA-based regimen, without significant differences in ischaemic events.

NOACs + P2Y12 inhibitors VS. Triple therapy

Efficacy outcome in ischemic events are similar between two groups.

ISTH Major or Clinically Relevant Non-Major Bleeding

Drugs	Trial	NO	AC	VKA		Risk Ratio, 95% CI
		Events	Total	Events	Total	Risk Ratio 95%CI
Edoxaban	ENTRUST-AF PCI	128	751	152	755	0.85 (0.68, 1.05)
Dabigatran	RE-DUAL PCI	305	1744	264	981	0.65 (0.56, 0.75)
Apixaban	AUGUSTUS	84	1143	210	1123	0.39 (0.31, 0.50)
Rivaroxaban	PIONEER-AF PCI	117	696	178	697	0.66 (0.53, 0.81)

Drugs	Dose
Edoxaban	60 mg QD (30mg in specific population)
Dabigatran	110 mg/ 150 mg BID (110 mg in U.S)
Apixaban	5 mg BID (2.5 mg in specific population)
Rivaroxaban	15 mg QD

NOACs + Clopidogrel for 12 months

Thrombotic	Bleeding	Recommondation
Low	Low	Others add aspirin for one month in patients at the lowest end of the bleeding risk spectrum.
Low	High	In patients at the highest bleeding risk, we consider stopping the P2Y12 inhibitor at six months.
High	Low	Some of our experts continue aspirin after the procedure for a period of one to six months.
High	High	Individualized patient decision making is essential. Some of our experts add aspirin for one month after the procedure in this high thrombotic risk group.

Ref: https://www.uptodate.com/contents/coronary-artery-disease-patients-requiring-combined-anticoagulant-and-antiplatelet-therapy? search=af%20CAD&source=search_result&selectedTitle=1~150&usage_type=default&display_rank=1#H24

Lancet 2019; 394: 1519-29

Glycaemic durability of an early combination therapy with vildagliptin and metformin versus sequential metformin monotherapy in newly diagnosed type 2 diabetes (VERIFY): a 5-year, multicentre, randomised, double-blind trial

Background: Although initial combination therapy has been suggested to offer more opportunities than a traditional stepwise approach, its validity remains to be determined.

Does early intensive treatment have better outcome?

NO

INDICATORS OF HIGH-RISK OR ESTABLISHED ASCVD, CKD. OR HF

CONSIDER INDEPENDENTLY OF BASELINE A1C OR INDIVIDUALIZED A1C TARGET

ASCVD PREDOMINATES

- Established ASCVD
- Indicators of high ASCVD risk (age ≥55 years with coronary. carotid or lower extremity artery stenosis >50%, or LVH)

PREFERABLY

GLP-1 RA with proven CVD benefit1 --- OR

SGLT2i with proven CVD benefit1 if eGFR adequate2

If A1C above target

If further intensification is required or patient is now unable to tolerate GLP-1 RA and/or SGLT2i, choose agents demonstrating CV safety:

- For patients on a GLP-1 RA, consider adding SGLT2i with proven CVD benefit1
- DPP-4i if not on GLP-1 RA
- Basal insulin⁴
- TZD⁵
- · SU®

HF OR CKD **PREDOMINATES**

- Particularly HFrEF (LVEF <45%)
- CKD: Specifically eGFR 30-60 mL/min/1.73 m² or UACR >30 mg/g, particularly UACR >300 mg/g

PREFERABLY

SGLT2i with evidence of reducing HF and/or CKD progression in CVOTs if eGFR adequate3 - OR -----

If SGLT2i not tolerated or contraindicated or if eGFR less than adequate² add GLP-1 RA with proven CVD benefit¹

If A1C above target

- · Avoid TZD in the setting of HF Choose agents demonstrating CV safety:
- For patients on a SGLT2i. consider adding GLP-1 RA with proven CVD benefit¹
- DPP-4i (not saxagliptin) in the setting of HF (if not on GLP-1 RA)
- Basal insulin⁴
- SU⁶
- 1. Proven CVD benefit means it has label indication of reducing CVD events
- 2. Be aware that SGLT2i labelling varies by region and individual agent with regard to indicated level of eGFR for initiation and continued use
- 3. Empagliflozin, canagliflozin and dapagliflozin have shown reduction in HF and to reduce CKD progression in CVOTs. Canagliflozin has primary renal outcome data from CREDENCE. Dapagliflozen has primary heart failure outcome data from DAPA-HF
- 4. Degludec or U100 glargine have demonstrated CVD safety
- 5. Low dose may be better tolerated though less well studied for CVD effects

IF A1C ABOVE INDIVIDUALIZED TARGET PROCEED AS BELOW

COMPELLING NEED TO MINIMIZE **HYPOGLYCEMIA**

DPP-4i GI P-1 RA SGLT2P TZD

If A1C HA1C If A1C HA1C above target above target above target above target GLP-1 RA SGLT2P SGLT2P SGLT2P OR OR DPP-4i DPP-4i OR OR

TZD

If A1C above target

OR

TZD

OR

GLP-1 RA

Continue with addition of other agents as outlined above

If A1C above target

Consider the addition of SU⁶ OR basal insulin:

- Choose later generation SU with lower risk of hypoglycemia.
- Consider basal insulin with lower risk of hypoglycemia?
- Choose later generation SU to lower risk of hypoglycemia. Gilmepiride has shown similar CV safety to DPP-41

TZD

- 7. Degludec / glargine U300 < glargine U100 / detemir < NPH insulin
- 8. Semaglutide > liraglutide > dulaglutide > exenatide > lixisenatide
- 9. If no specific comorbidities (i.e. no established CVD, low risk of hypoglycemia and lower priority to avoid weight gain or no weight-related comorbidities)
- 10. Consider country- and region-specific cost of drugs. In some countries TZDs relatively more expensive and DPP-4i relatively cheaper

COMPELLING NEED TO MINIMIZE WEIGHT GAIN OR PROMOTE WEIGHT LOSS

ETHER/ GLP-1 RA with good efficacy SGLT2F for weight loss⁸

If A1C above target

GLP-1 RA with good efficacy SGLT2F2 for weight loss⁸

If A1C above target

If quadruple therapy required, or SGLT2i and/or GLP-1 RA not tolerated or contraindicated, use regimen with lowest risk of weight gain

PREFERABLY

DPP-4i (if not on GLP-1 RA) based on weight neutrality

If DPP-4i not tolerated or on GLP-1 RA, cautious addition of:

COST IS A MAJOR ISSUE9-10

THERAPEUTIC INERTIA

REASSESS AND MODIFY TREATMENT

REGULARLY (3-6 MONTHS)

SU⁶ TZD10

If A1C above target

TZD10 SU

If A1C above target

 Insulin therapy basal insulin with lowest acquisition cost

 Consider DPP-4i OR SGLT2i with lowest acquisition cost10

contraindicated or patient already

· SU⁶ · TZD⁶ · Basal insulin

LVH = Left Ventricular Hypertrophy; HFrEF = Heart Failure reduced Ejection Fraction UACR = Urine Albumin-to-Creatinine Ratio; LVEF = Left Ventricular Ejection Fraction

GLYCEMIC CONTROL ALGORITHM

INDIVIDUALIZE GOALS

A1C ≤6.5% Fo

For patients without concurrent serious illness and at low hypoglycemic risk

A1C >6.5%

For patients with concurrent serious illness and at risk for hypoglycemia

LIFESTYLE THERAPY (Including Medically Assisted Weight Loss)

Entry A1C <7.5%

MONOTHERAPY¹

✓ Metformin

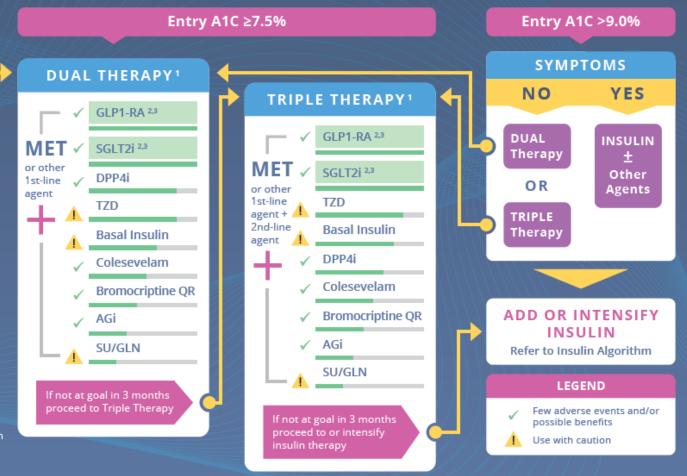
✓ GLP1-RA ^{2,3}

✓ SGLT2i ^{2,3}

✓ DPP4i

TZD

✓ AGi


SU/GLN

Order of medications represents a suggested hierarchy of usage; length of line reflects strength of recommendation

If not at goal in 3 months

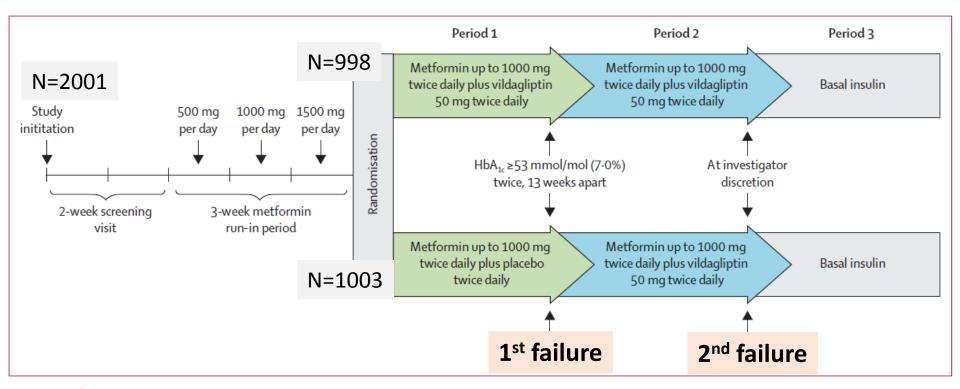
proceed to Dual Therapy

- 2 Certain GLP1-RAs and SGLT2is have shown CVD and CKD benefits—preferred in patients with those complications
- 3 Include one of these medications if CHD present

Cohort study

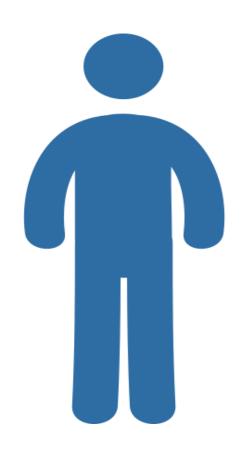
The Legacy Effect in Type 2 Diabetes: Impact of Early Glycemic Control on Future Complications (The Diabetes & Aging Study)

Diabetes Care 2019;42:416-426 | https://doi.org/10.2337/dc17-1144


		Microvascular events		I	Macrovascular events			Death		
Early period and mean glycemic control	n/total n	Adjusted HR (95% CI)	P value	n/total n	Adjusted HR (95% CI)	P value	n/total n	Adjusted HR (95% CI)	P value	
0–1 year										
HbA _{1c}										
<6.5% (<48 mmol/mol)	864/14,080	Reference		3,668/13,455	Reference		744/14,286	Reference		
6.5% to <7.0% (48 to <53 mmol/mol)	372/5,774	1.204 (1.063-1.365)	0.004	1,497/5,552	1.188 (1.116-1.264)	< 0.0001	268/5,877	1.137 (0.985-1.313)	0.079	
7.0% to <8.0% (53 to <64 mmol/mol)	385/4,656	1.391 (1.226-1.578)	< 0.0001	1,244/4,501	1.287 (1.203-1.377)	< 0.0001	224/4,730	1.290 (1.104-1.507)	0.001	
8.0% to <9.0% (64 to <75 mmol/mol)	154/1,390	1.603 (1.340-1.917)	< 0.0001	383/1,351	1.369 (1.227-1.527)	< 0.0001	68/1,418	1.262 (0.978-1.628)	0.073	
≥9.0% (≥75 mmol/mol)	232/1,259	2.213 (1.892-2.590)	< 0.0001	382/1,220	1.485 (1.329-1.659)	< 0.0001	66/1,290	1.320 (1.017-1.713)	0.037	
Missing	647/7,047	1.354 (1.218-1.505)	< 0.0001	1,899/6,867	1.112 (1.050-1.177)	0.0003	437/7,136	1.235 (1.094-1.394)	0.001	

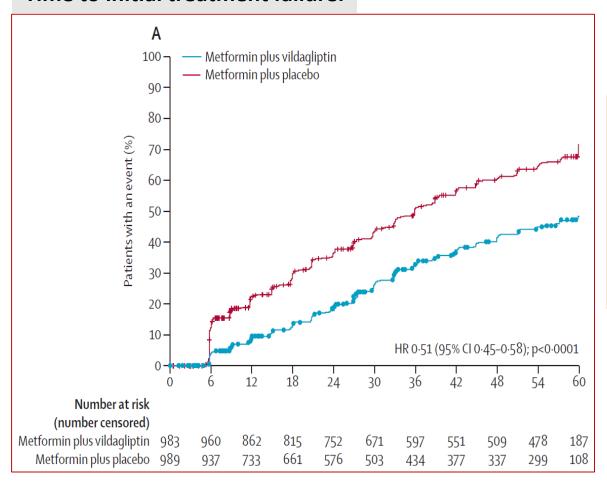
CONCLUSIONS

Among patients with newly diagnosed diabetes and 10 years of survival, HbA_{1c} levels ≥6.5% (≥48 mmol/mol) for the 1st year after diagnosis were associated with worse outcomes. Immediate, intensive treatment for newly diagnosed patients may be necessary to avoid irremediable long-term risk for diabetic complications and mortality.


Method

Open-label RCT

Primary outcome:
 The time from randomisation to initial treatment failure.
 (HbA1c >7·0% at two consecutive scheduled visits, 13 weeks apart from randomisation through period 1.)

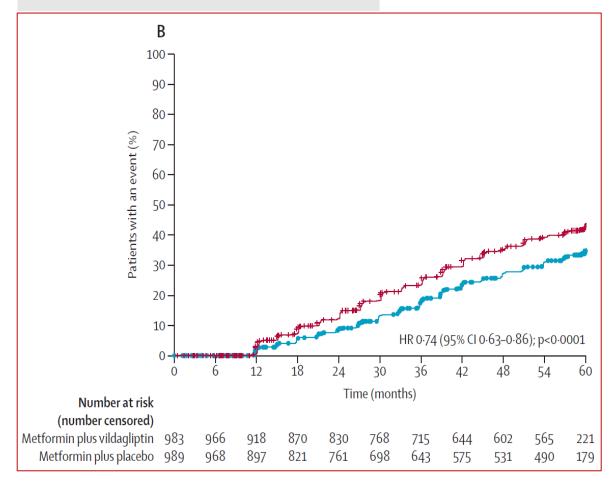

Baseline characteristics

- Age: 54
- HbA1c:
 - Mean: 6.7%
 - HbA1c < 7%: 72.3%
 - HbA1c > 7%: 27.5%
- BMI: 31.2
- Baseline eGFR:
 - Normal (>90): 43.3%
 - Mild (60-90): 53.3%
 - Moderate (30-60): 3.5%
- No significant difference between groups.

Primary outcome

Time to initial treatment failure.

Incidence rate


Combination group: 43.6% Monotherapy group: 62.1%

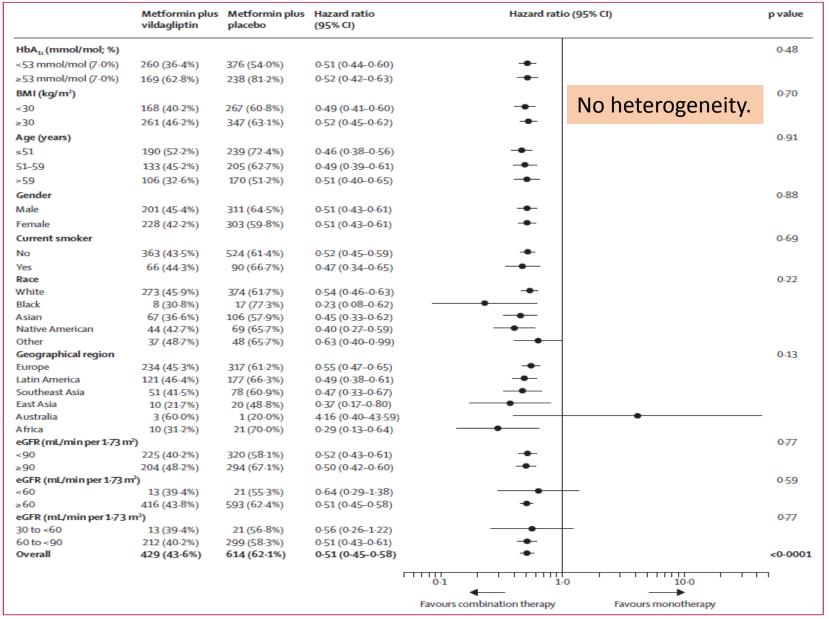
Time to treatment failure

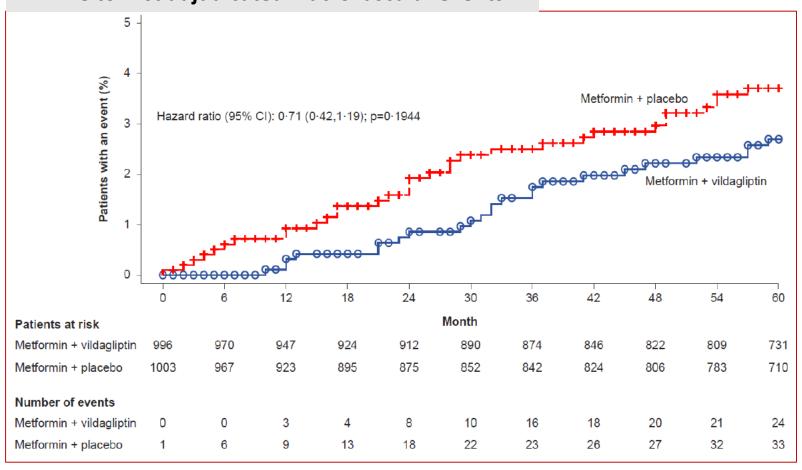
Combination group: 61.9 months Monotherapy group: 36.1 months

Outcome

Time to second treatment failure.

Sub-group analysis




Figure 4: Subgroup analysis of time to initial treatment failure

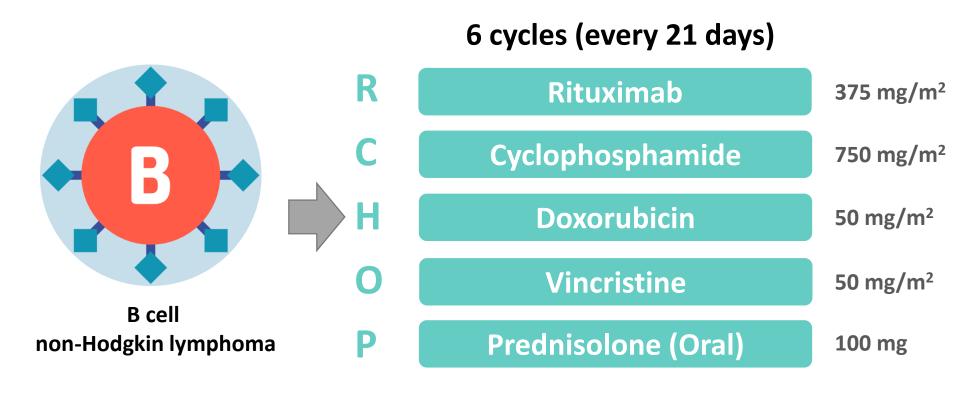
Safety outcome

- The overall safety and tolerability profile was similar between treatment approaches.
- Hypoglycaemic events are low. (1.3% v.s 0.9%)
- 4% annualised rate of discontinuation was low, and similar between the groups (4.1% in the combination treatment group, 5.3% in the monotherapy group).

Other outcomes

Time to first adjudicated macrovascular events

Conclusion


 Early intervention with a combination therapy provides greater and durable long-term benefits compared with the current standard-of-care initial metformin monotherapy for patients with newly diagnosed type 2 diabetes.

9.6 Early combination therapy can be considered in some patients at treatment initiation to extend the time to treatment failure. **A**

- (1)原則上第二型糖尿病治療應優先使用 metformin,或考慮早期開始使用胰島素。 除有過敏、禁忌症、不能耐受或仍無法理想控制血糖的情形下,可使用其他類口 服降血糖藥物。↓
- (2)TZD製劑、DPP-4抑制劑、SGLT-2抑制劑、以及含該3類成分之複方製劑,限用於已接受過最大耐受劑量的metformin仍無法理想控制血糖之第二型糖尿病病人,且 SGLT-2抑制劑與 DPP-4抑制劑及其複方製劑宜二種擇一種使用。

THE LANCET

Four versus six cycles of CHOP chemotherapy in combination with six applications of rituximab in patients with aggressive B-cell lymphoma with favourable prognosis (FLYER): a randomised, phase 3, non-inferiority trial

International Prognostic Index

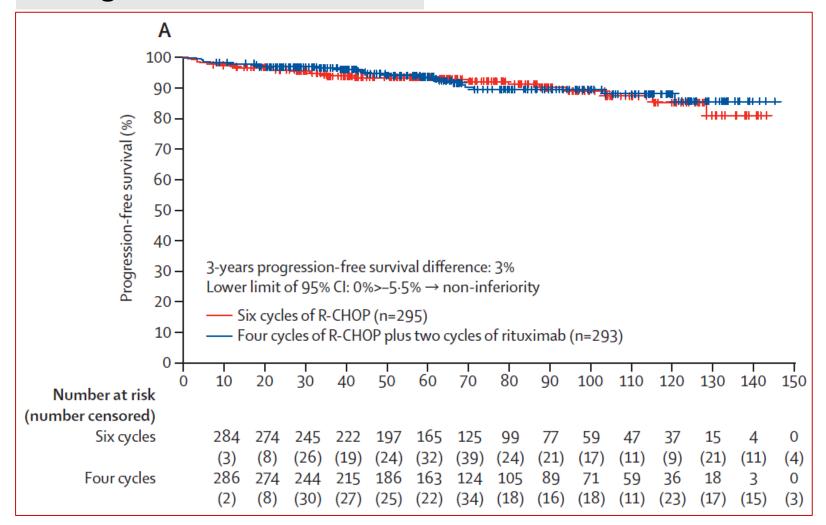
- Age >60
- Serum lactate dehydrogenase concentration above normal
- ECOG performance status ≥2
- Ann Arbor stage III or IV
- Number of extranodal disease sites >1

Method

 Trial design: open-label, international, multicentre, prospective, randomised phase 3 non-inferiority trial.

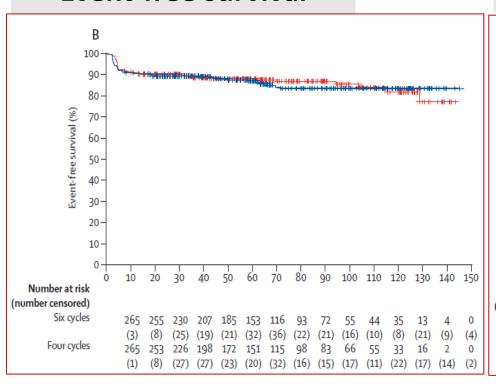
• Age: 18-60
• Stage I or II, normal LDH, ECOG: 0-1
• Without bulky disease (maximal tumour diameter <7.5 cm).

6 cycle
R-CHOP
(N=295)


4 cycle R-CHOP
+
2 dose Rituximab
(N=297)

Primary outcome:
 Progression-free survival after 3 years

Primary outcome


Progression-free survival

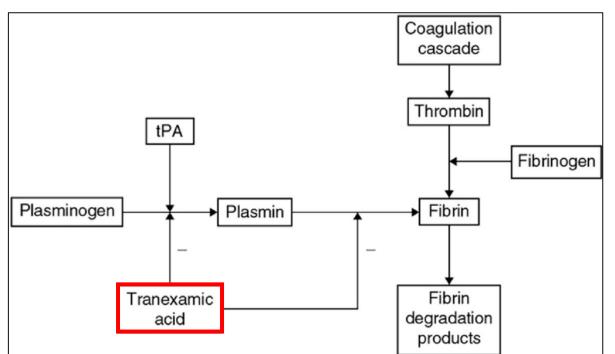
Median follow-up: 66 months

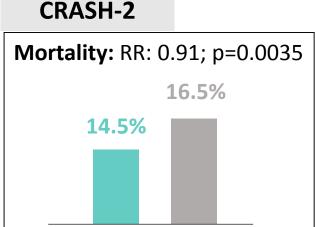
Outcome

Event-free survival

Overall survival

Outcome


	Four cycles of R-CHOP plus two cycles of rituximab group (n=293)	Six cycles of R-CHOP group (n=295)
Complete response or unconfirmed complete response	267 (91%; 87-94)	271 (92%; 88–95)
Partial response*	8 (3%)	11 (4%)
No change	0	1 (<1%)
Progressive disease	3 (1%)	3 (1%)
Not evaluated or missing data†	15 (5%)	9 (3%)
Relapse after complete response or unconfirmed complete response	11/267 (4%; 2–7)	13/271 (5%; 3–8)
Relapse after partial response	2/8 (25%)	2/11 (18%)
Relapse after no change	0	1/1 (100%)
Relapse after not evaluated or missing data	3/15 (20%)	2/9 (22%)


Adverse events

	Four cycles of R-CHOP plus two cycles of rituximab group (n=293)		Six cycles of I (n=295)	R-CHOP group
	Any grade	Grades 3-4	Any grade	Grades 3-4
Leucocytopenia*	171	80	237	110
Anaemia†	107	2	172	8
Thrombocytopenia‡	16	5	17	7
Non-haematological adverse event	1036	52	1280	71
Infection	116	22	156	23
Paresthesia	342	16	370	14
Nausea	221	6	319	12
Vomiting	61	1	117	7
Mucositis	80	1	105	3
Constipation	100	4	69	2
Mood alteration	59	1	60	0
Diarrhoea	33	0	40	6
Arrhythmia	8	1	24	0
Allergy	16	0	19	3
Paraplegia			1§	1
Therapy-associated deaths			2¶	

Effects of tranexamic acid on death, disability, vascular occlusive events and other morbidities in patients with acute traumatic brain injury (CRASH-3): a randomised, placebo-controlled trial

Background: Intracranial bleeding is common after traumatic brain injury (TBI) and can cause brain herniation and death. We aimed to assess the effects of tranexamic acid in patients with TBI.

Traumatic extracranial bleeding

Placebo

TXA

Ref: Crash-2: Lancet 2010; 376: 23-32.

Method

 Trial design: international, multi-centre, randomised, placebocontrolled trial

Adults with TBI who were within 3 h of injury*

(N=12737)

- GCS score of 12 or lower or any intracranial bleeding on CT scan.
- No major extracranial bleeding.

Tranexamic acid (N=6406)

Dose: loading dose 1 g over 10 min then infusion of 1 g over 8 h

N=4514 within 3h

Placebo

(N=6331)

N=4613 within 3h

Primary outcome:
 Head injury-related death in hospital within 28 days of injury in patients treated within 3 h of injury.

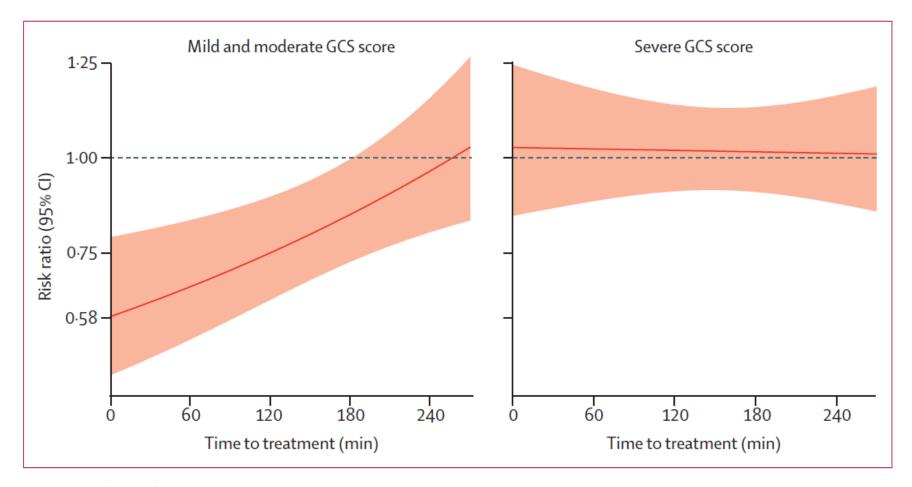
Baseline characteristics

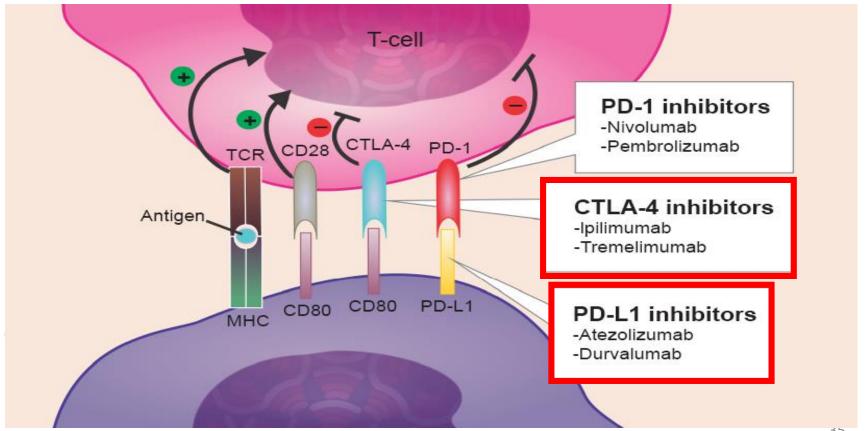
	Tranexamic acid (n=4649)	Placebo (n=4553)		Tranexamic acid (n=4649)	Placebo (n=4553)
Sex*			Glasgow Coma Scale score		
Men	3742 (80%)	3660 (80)	3	495 (11%)	506 (11%)
Women	906 (19%)	893 (20)	4	213 (5%)	213 (5%)
Age, years			5 Sovere: 400/	163 (4%)	172 (4%)
Mean (SD)	41.7 (19.0)	41.9 (19.0)	Severe: 40%	221 (5%)	232 (5%)
<25	1042 (22%)	996 (22%)	7	311 (7%)	294 (6%)
25-44	1716 (37%)	1672 (37%)	8	354 (8%)	315 (7%)
45-64	1169 (25%)	1184 (26%)	9	335 (7%)	292 (6%)
≥65	722 (16%)	701 (15%)	10	371 (8%)	364 (8%)
Time since injury, h			11 Moderate: 33%	375 (8%)	390 (9%)
Mean (SD)	1.9 (0.7)	1.9 (0.7)	12	476 (10%)	478 (10%)
≤1	877 (19%)	869 (19%)	13	<u> </u>	312 (7%)
>1-2	2003 (43%)	1889 (41%)	14 Mild: 27%	526 (11%)	458 (10%)
>2-3	1769 (38%)	1795 (39%)	15	484 (10%)	492 (11%)
Systolic blood pressure,	mm Hg		Unknown	28 (1%)	35 (1%)
<90	89 (2%)	85 (2%)	Pupil reaction		
90-119	1508 (32%)	1490 (33%)	None reacted	425 (9%)	440 (10%)
120-139	1461 (31%)	1504 (33%)	One reacted	374 (8%)	353 (8%)
≥140	1576 (34%)	1466 (32%)	Both reacted	3706 (80%)	3636 (80%)
Unknown	15 (<1%)	8 (<1%)	Unable to assess or unknown	144 (3%)	124 (3%)

Primary Outcome

		Tranexamic acid	Placebo	Risk ratio (95% CI)
All		855/4613 (18.59	%) 892/4514 (19-8	3%) 0.94 (0.86–1.02)
Excluding patier bilateral unreact	nts with GCS score of ive pupils*	3 or 485/3880 (12·59	%) 525/3757 (14·0	0%) 0.89 (0.80–1.00)
	166/2846 (5.8%)	207/2769 (7.5%)		0.78 (0.64-0.95)
(9–15) Severe (3–8) p=0.030 Pupil reactivity	689/1739 (39·6%)	685/1710 (40·1%)		0.99 (0.91–1.07)
Both react	440/3820 (11.5%)	493/3728 (13.2%)	_	0.87 (0.77-0.98)
Any non-reactive p=0.032	415/793 (52·3%)	399/786 (50-8%)		1.03 (0.94–1.13)
Overall	855/4613 (18.5%)	892/4514 (19·8%) 0.75 0.8	30 0.85 0.90 0.95 1	0.94 (0.86-1.02) 0 1.1

Effect of tranexamic acid on head injury-related death by severity and time to treatment in all patients



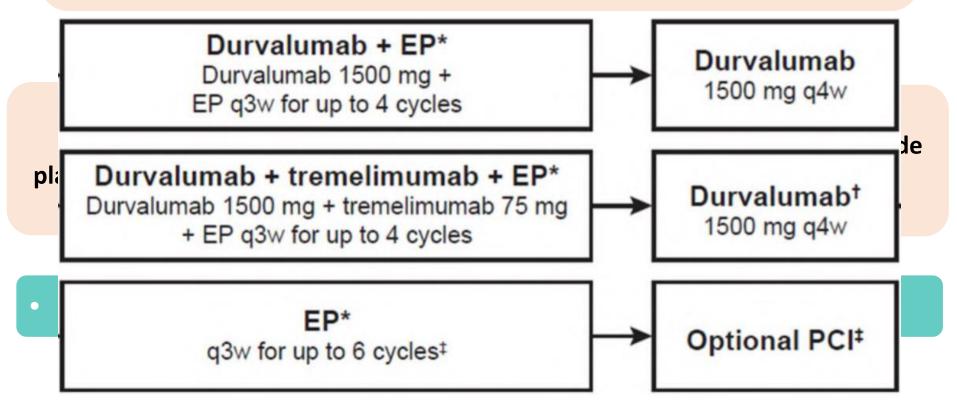

Figure 4: Effect of tranexamic acid on head injury-related death by severity and time to treatment in all patients

Other outcomes

- No effects of disability, vascular occlusive events, and other complications.
- No evidence of any increased risk of adverse events.

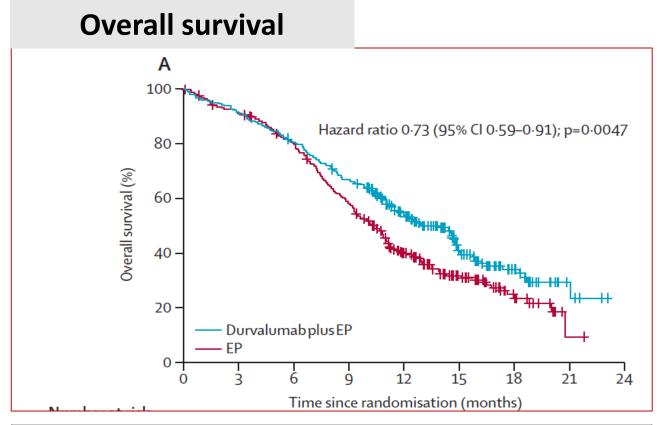
Conclusion

 Tranexamic acid is safe in patients with TBI and that treatment within 3 h of injury reduces head injury-related deaths. Durvalumab (Imfinzi) plus platinum-etoposide versus platinum-etoposide in first-line treatment of extensive-stage small-cell lung cancer (CASPIAN): a randomised, controlled, open-label, phase 3 trial



Method

- Trial design: randomised, open-label, phase 3 trial
 - Adults with untreated ES-SCLC
 - ECOG status 0 or 1.


(N=805)

- Life expectancy of at least 12 weeks.
- Suitability for first-line platinum-based chemotherapy
- Adequate organ and marrow function

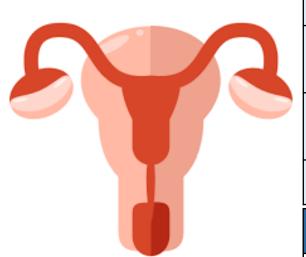
Outcome

• Medium follow up: 14.2 months.

	Durvalumab	Platinum– etoposide
Overall survival (months)	13	10.3
12 month survival rate	54%	40%
18 month survial rate	34%	25%

Safety

- More AEs in leukopenia, cough, hyponatremia, hypertension, lipase increased, amylase increased.
- Less AEs in neutropenia, anemia, thrombocytopenia.
- Others AEs are similar.


台灣部核適應症(免疫療法)

- Tecentriq (Atezolizumab)
 - 小細胞肺癌-與carboplatin和etoposide併用,適用於第一線治療成人擴散期小細胞肺癌(extensive stage small cell lung cancer)。
- Keytruda (Pembrolizumab)
 - 小細胞肺癌-治療先前至少已接受兩種治療的局部晚期或轉移性小細胞肺癌 (SCLC) 病人。本項適應症係依據腫瘤整體反應率及治療反應持續時間加速核准,此適應症仍須執行確認性試驗以證明其臨床效益。
- Imfinzi (Durvalumab)
 - 台灣未核准用於小細胞肺癌。

Immunotherapy (SLC)

	Imfinzi	Tecentriq	Keytruda
Drugs	Durvalumab	Atezolizumab	Pembrolizumab
Dosage	500 mg/vial	1200 mg/vial	100 mg/vial
Dose	e 1500 mg Q3W (4 1200 mg Q3W cycle) ,1500 mg Q4W		200 mg Q3W
Cost/vial	\$92983	\$145695	\$71523
Cost/year	\$3905286	\$2525380	\$2479464
Efficacy	Overall survival: 13 v.s 10.3 months	Over survival: 12.3 v.s 10.3 months	ORR: 19% Complete response:2% Durable response >6 mon: 94% >12 mon: 63% >18 mon: 56%

Weekly dose-dense chemotherapy in first-line epithelial ovarian, fallopian tube, or primary peritoneal carcinoma treatment (ICON8): primary progression free survival analysis results from a GCIG phase 3 randomised controlled trial

Epithelial Ovarian Cancer (EOC)

FIGO	FIGO Stage								
I Tumor limited to 1 ovary or both ovaries.									
Pelvic extension (below the pelvic brim) or prima peritoneal cancer.									
Ш	Confirmed spread to the peritoneum outside the pelvis and/or metastasis to the retroperitoneal lymph nodes								
IV	Distant metastasis.								

Treatment

- 1. Primary surgical cytoreduction \rightarrow Systemic chemotherapy.
- 2. Neoadjuvant chemotherapy → Surgery

First-line:

Carboplatin [AUC] 5 or 6 + Paclitaxel 180 mg/m² Q3W (6 cycles)

Long-term results of dose-dense paclitaxel and carboplatin versus conventional paclitaxel and carboplatin for treatment of advanced epithelial ovarian, fallopian tube, or primary peritoneal cancer (JGOG 3016): a randomised, controlled, open-label trial

P	Stage II–IV ovarian cancer	С	Carboplatin [AUC] 6 Q3W + Paclitaxel 180 mg/m ² Q3W
I	Carboplatin [AUC] 6 Q3W + Paclitaxel 80 mg/m ² QW	0	Progression-free survival: 28·2 vs 17·5 months (HR: 0·76, 95% CI 0·62–0·91; p=0·0037)

Interpretation Dose-dense treatment offers better survival than conventional treatment and is a potential new standard of care for first-line chemotherapy for patients with advanced epithelial ovarian cancer.

Method

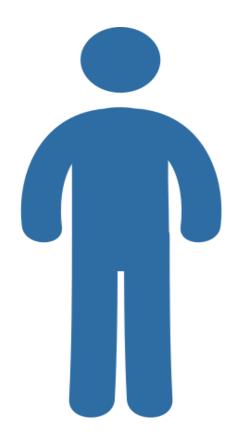
- Trial design: international, open-label, randomized phase 3, three-arm trial
 - Stage IC–IV epithelial ovarian cancer.

(N=1566)

- ECOG: 0-2
- Life expectancy longer than 12 weeks
- Adequate haematological, renal, and hepatic functions.

(1) Carboplatin [AUC] 5or6 Q3W + Paclitaxel 175 mg/m² Q3W (N=522)

(2) Carboplatin [AUC]
5or6 Q3W + Paclitaxel
80mg/m2 QW
(N=523)

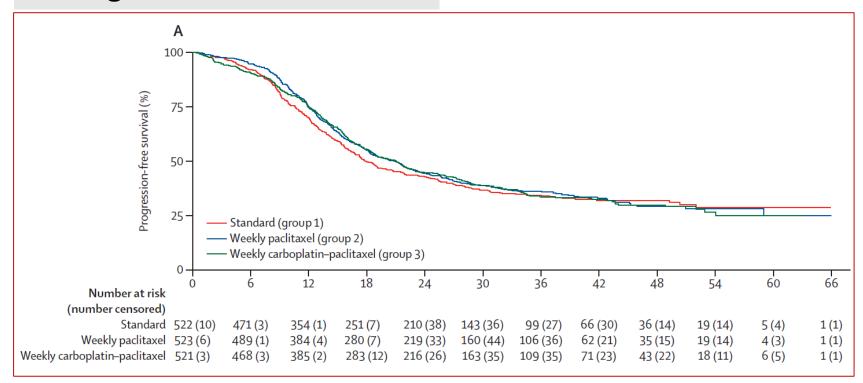

(3) Carboplatin [AUC]
2 QW + Paclitaxel
80mg/m² QW
(N=521)

Primary outcome: Progression-free survival.

Baseline characteristics

• Age: 62

• Region: UK (89%)

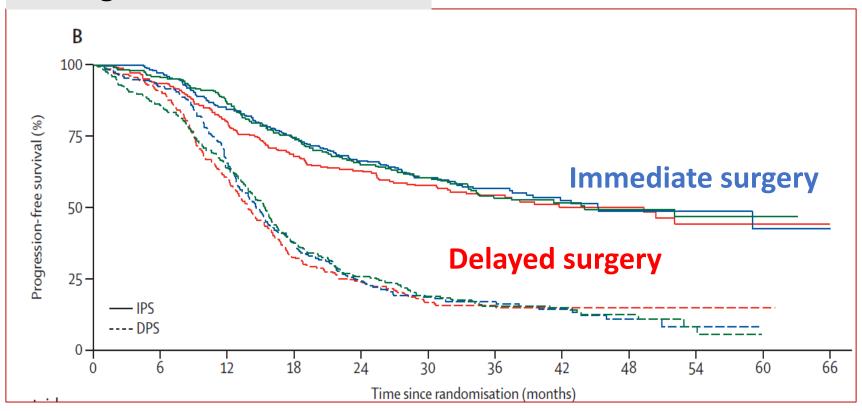

Origin	
Ovary (epithelial)	420 (81%)
Fallopian tube	24 (5%)
Primary peritoneal	77 (15%)
Missing data	1 (<1%)

FIGO stage	
IC or IIA	56 (11%)
IIB or IIC	47 (9%)
IIIA or IIIB	43 (8%)
IIIC	273 (52%)
IV	103 (20%)

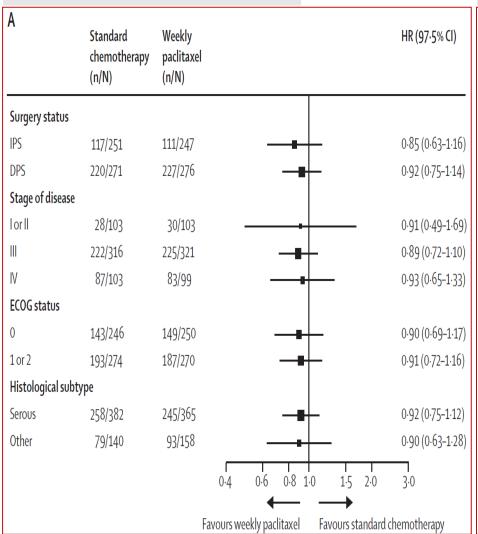
Timing of surgery					
Immediate	251 (48%)				
Delayed	257 (49%)				
Inoperable	14 (3%)				

Primary outcome

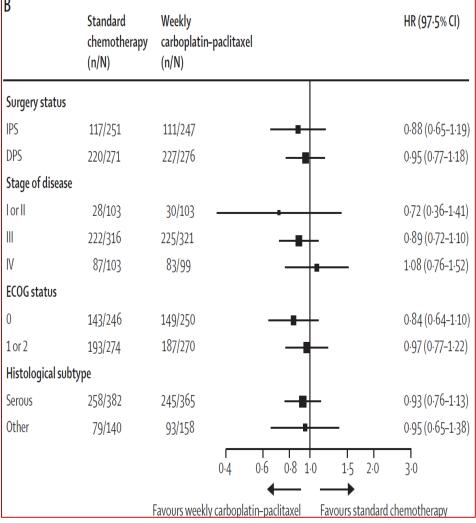
Progression-free survival



Restricted mean survival time


- 24.4 months [97.5% CI 23.0–26.0] in group 1.
- 24.9 months [24.0–25.9] in group 2.
- 25.3 months [23.9–26.9] in group 3.

Primary outcome



PFS (Group 1 vs. 2)

PFS (Group 1 vs. 3)

Safety outcome

 Both weekly treatments were associated with more treatment modifications and a higher incidence of grade 3 or higher toxic effects.

Conclusion

 Weekly dose-dense paclitaxel should no longer be recommended as a component of first-line epithelial ovarian cancer treatment for women of non-Japanese ethnic origin.

Conventional vs. Dose-dense

	ICON-8	JGOG 3016	MITO-7
Comparison	C Q3W + P Q3W C Q3W + P QW C QW + P QW	C Q3W + P Q3W C Q3W + P QW	C Q3W + P Q3W C (AUC 2) QW+ P (60) QW
Efficacy (PFS) No difference		Dose dense	No difference
Safety	Conventional	Conventional	Dose dense (AE, QOL)
Population European (UK)		Asian (Japan)	European (Italy, France)

Once-Daily versus Twice-Daily Tacrolimus in Kidney Transplantation: A Systematic Review and Meta-analysis of Observational Studies

Tacrolimus Once Daily (ADVAGRAF) Versus Twice Daily(PROGRAF) in *De Novo* Renal Transplantation: A Randomized Phase III Study

	Overall p	opulation	Per-protocol set		
	Tacrolimus BID (n = 336)	Tacrolimus QD (n = 331)	Tacrolimus BID (n = 291)	Tacrolimus QD (n = 280)	
Primary endpoint					
Local BPAR over 24 weeks					
Event rate for BPAR	14.9%	18.6%	15.8%	20.4%	
p-Value [†]	0.2	45	0.1	82	
Treatment difference (Tacrolimus QD minus Tacrolimus BID)	3.8	3%	4.5	5%	

Method: Systematically reviewed all observational studies that compared clinical outcomes between ER-Tac and IR-Tac in KTRs.

Outcome

• Recruited 10 studies (1176 adults).

12-month biopsy-proven acute rejection

		•	•			•	
	ER-Ta	ac	IR-Ta	С		Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	IV, Random, 95% CI Year	IV, Random, 95% CI
Fanous 2013	7	106	15	95	13.3%	0.42 [0.18, 0.98] 2013	-
Ishida 2013	0	10	0	35		Not estimable 2013	
Masutani 2014	15	90	7	29	15.3%	0.69 [0.31, 1.53] 2014	
Niiokā 2017	26	80	59	140	70.3%	0.77 [0.53, 1.12] 2017	-
Ho 2019	0	19	3	55	1.1%	0.40 [0.02, 7.41] 2019	•
Total (95% CI)		305		354	100.0%	0.69 [0.51, 0.95]	•
Total events	48		84				
Heterogeneity: Tau ² =	0.00; Chi ²	= 1.80	, df = 3 (P	= 0.61); ² = 0%		
Test for overall effect:	Z = 2.30 (P = 0.0	2)				0.01 0.1 1 10 100 Favours ER-Tac Favours IR-Tac

• No difference in other outcomes.

Drug causes of intracerebral haemorrhage

Drug cause HTN

- Oral contraceptives
- Sympathomimetic drugs (e.g. ephedrine, phenylephrine)
- NSAIDs
- Corticosteroids
- Immunomodulators (e.g. ciclosporin, leflunamide, and infliximab)
- Antipsychotics/ Antidepressants
- EPO
- Ergot alkaloids

Drugs cause bleeding

Anticoagulants/ Thrombolytic drugs

Drugs of abuse

• Amphetamines, cocaine.

Statins*

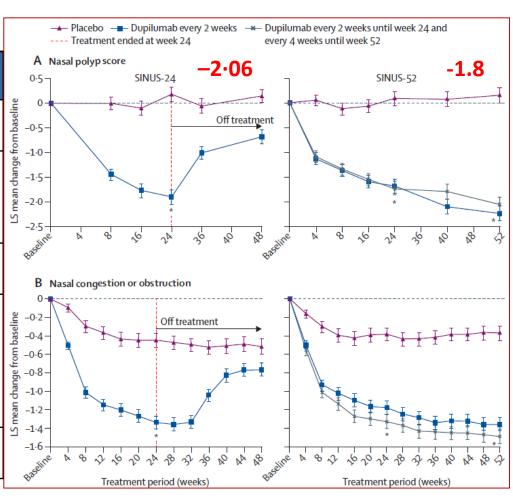
Abstract

Irbesartan in Marfan syndrome (AIMS): a doubleblind, placebo-controlled randomised trial

Р	Marfan syndrome	С	Placebo
	Irbesartan 150 mg (300 mg as tolerated)	0	Change in aortic root systolic diameter (mm): 0.53 vs. 0.74 Difference: -0.22 (-0.41 to -0.02)

THE LANCET

Lancet 2019; 394: 1325-34


Percutaneous coronary intervention versus coronary artery bypass grafting in patients with three-vessel or left main coronary artery disease: 10-year follow-up of the multicenter randomised controlled SYNTAX trial

Р	De-novo three-vessel or left main CAD	С	CABG
I	PCI (first-generation paclitaxel-eluting stents)	0	10-years all-cause mortality: HR: 1.17; p=0.092 10-years ACM in three vessel disease: HR: 1.41; (95% CI 1.1-1.8)

Efficacy and safety of dupilumab in patients with severe chronic rhinosinusitis with nasal polyps (LIBERTY NP SINUS-24 and LIBERTY NP SINUS-52): results from two multicentre, randomised, double-blind, placebo-controlled, parallel-group phase 3 trials

LIBERTY NP SINUS-24

NF	NPS					
0	Absence of polyps					
1	Small polys in middle meatus/ edema					
2	Middle meatus obstruction					
3	Polyps extend beyond middle meatus without complete nasal obstruction					
4	Massive nasal polyposis					

Lancet 2019; 394: 1807-15

Recurrence of breast cancer after regional or general anaesthesia: a randomised controlled trial

P	Women having potentially curative primary breast cancer resections	С	General anaesthesia (sevoflurane/opioid analgesia)
ı	Regional anaesthesia analgesia (paravertebral block/ propofol)	0	No difference in recurrence rate: 10% vs. 10% (HR: 0.97, 95% CI 0.74–1.28) No difference in incisional pain.

	Pembrolizumab alone vs. CT	Pembrolizumab+CT vs. CT
PD L1 CPS >1	12·3 <i>vs.</i> 10·3 months (HR: 0·78 [0·64–0·96], p=0·0086)	13·6 vs. 10·4 months (HR: 0·65 [0·53–0·80], p<0·0001)
PD L1 CPS>20	14·9 <i>vs.</i> 10·7 months (HR: 0·61 [0·45–0·83], p=0·0007)	14·7 <i>vs.</i> 11·0 months (HR: 0·60 [0·45–0·82], p=0·0004)
All population 11.6 vs. 10.7 months (HR: 0.85 [0.71–1.03], non-inferior)		13·0 vs. 10·7 months (HR: 0·77 [0·63–0·93], p=0·0034)

THE LANCET . IAK1	selecti	ve inhibitor	Lancet 2019; 394: 2108–17
ASAS response	citini	b in patien	ts with active
		XIS 1): a mu bo-controlle	ulticentre, ed, phase 2/3 trial
2. Patient assessment of back pain.			
2 Dath Ankylosing Chandylitis Functional		Placebo	

2. Patient assessment of back pain.
3. Bath Ankylosing Spondylitis Functional

- Index (BASFI).
- 4. Inflammation defined as the mean of the BASDAI questions on severity and duration of morning stiffness.

0

ASAS 40 response at week 14: 48 [52%] of 93 patients vs. 24 [26%] of 94 patients; p=0.0003

THELANCET

Lancet 2019; 394: 2096-107 Isatuximab plus pomalidomide and low-dose dexamethasone versus pomalidomide and low-dose dexamethasone in patients with relapsed and refractory multiple myeloma (ICARIA-MM): a randomised, multicentre, openlabel, phase 3 study

P	Relapsed and refractory multiple myeloma had received at least two previous treatment.	С	Pomalidomide 4 mg + Dexamethasone 40 mg.
I	Isatuximab 10 mg/kg + Pomalidomide 4 mg + Dexamethasone 40 mg	0	Progression-free survival 11.5 vs. 6.5 months (HR: 0.6; p=0.001) No difference in overall survival. 57

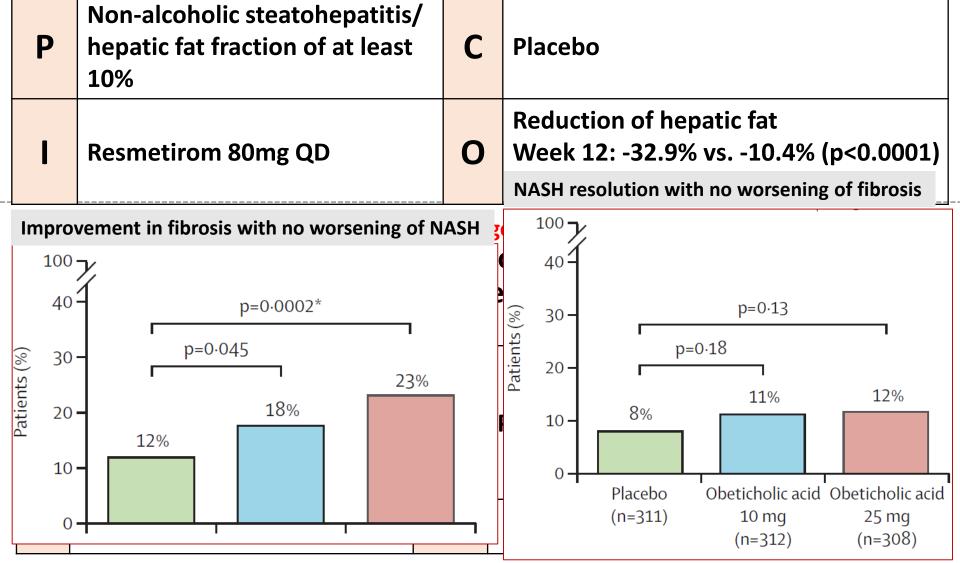
Lancet 2019; 394: 1993-2001

Results of a 6-week treatment with 10 mg prednisolone in patients with hand osteoarthritis (HOPE): a double-blind, randomised, placebo-controlled trial

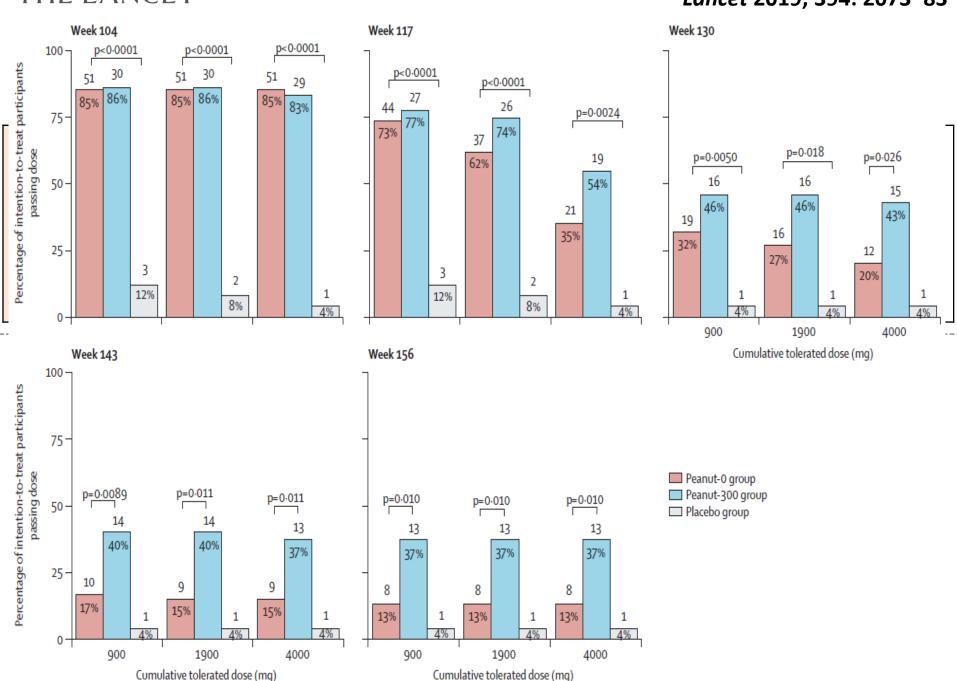
Р	Symptomatic hand osteoarthritis and signs of inflammation in their distal /proximal interphalangeal joints	С	Placebo
ı	10 mg prednisolone QD for 6weeks	0	VAS-reported finger pain: -21·5 (SD 21·7) vs5·2 (24·3) Mean difference: -16·5 (95% CI -26·1 to -6·9; p=0·0007).

THE LANCET

Lancet 2019 1540-1550


Patiromer versus placebo to enable spironolactone use in patients with resistant hypertension and chronic kidney disease (AMBER): a phase 2, randomised, double-blind, placebo-controlled trial

P	CKD and uncontrolled HTN.	С	Placebo + Spironolactone
ı	Patiromer 8.4 g QD + Spironolactone	0	Remained on spironolactone at week 12: 86% vs. 66% (p<0.0001). Change in SBP: -11.7 vs10.8 (p=0.58). Less hyperkalemia in patiromer group.


Thyroid hormone receptor β agonist

Lancet 2019; 394: 2012-24

Resmetirom (MGL-3196) for the treatment of non-alcoholic steatohepatitis: a multicentre, randomised, double-blind, placebo-controlled, phase 2 trial

Lancet 2019; 394: 2073–83

Drugs | First approval

Lasmiditan (Reyvow®)

Indication: Acute treatment of migraine with or without aura in adults.

Mechanism: 5-HT1F receptor agonist

Brolucizumab (Beovu®)

Indication: Exudative (wet) age-related macular degeneration (AMD)

Mechanism: VEGF inhibitor.

Drugs | First approval

Elexacaftor/Ivacaftor/Tezacaftor (Trikafta®)

Indication: Cystic fibrosis in patients aged ≥ 12 years who have ≥ 1 F508del mutation in the CFTR gene.

Mechanism: CFTR correctors (Elexacaftor and Tezacaftor)/ CFTR potentiator (Ivacaftor).

Tenapanor (Ibsrela®®)

Indication: Constipation-predominant irritable bowel syndrome (IBS-C). **Mechanism:** Sodium/hydrogen exchanger 3 (NHE3) inhibitors.

Drugs | First approval

Trifarotene (Aklief®)

Indication: Acne vulgaris in patients 9 years of age and older **Mechanism:**Selective retinoic acid receptor (RAR)-γ agonist. (fourthgeneration retinoid)

Upadacitinib (Rinvoq®)

Indication: Moderately to severely active RA who have had an inadequate response or intolerance to methotrexate.

Mechanism: JAK 1 inhibitor.

Others

- Safety and efficacy of a self-expanding versus a balloon-expandable bioprosthesis for transcatheter aortic valve replacement in patients with symptomatic severe aortic stenosis: a randomised non-inferiority trial
- Safety and efficacy of a self-expanding versus a balloon-expandable bioprosthesis for transcatheter aortic valve replacement in patients with symptomatic severe aortic stenosis: a randomised non-inferiority trial
- Public-access defibrillation and neurological outcomes in patients with out-of-hospital cardiac arrest in Japan: a population-based cohort study
- External beam accelerated partial breast irradiation versus whole breast irradiation after breast conserving surgery in women with ductal carcinoma in situ and node-negative breast cancer (RAPID): a randomised controlled trial
- Laparoscopic supracervical hysterectomy versus endometrial ablation for women with heavy menstrual bleeding (HEALTH): a parallel-group, open-label, randomised controlled trial

Thank you